
Almost-Delaunay Simplices : Robust Neighbor Relations
for Imprecise 3D Points using CGAL

Deepak Bandyopadhyay Jack Snoeyink∗

Abstract

This paper describes a CGAL implementation of a new
computational geometry technique, almost-Delaunay sim-
plices [1], in 3D. Almost-Delaunay simplices capture possi-
ble sets of Delaunay neighbors in the presence of a bounded
perturbation, and give a framework for nearest neigh-
bor analysis in imprecise point sets such as protein struc-
tures. The implementation, available onhttp://www.cs.unc.
edu/∼debug/papers/AlmDelis faster and more memory effi-
cient than our prototype MATLAB implementation, and en-
ables us to scale our neighbor analysis to large sets of pro-
tein structures, each with 100-3000 residues.

1 Motivation & Definitions

The Delaunay tessellation (DT) is a geometric structure that
defines a nearest neighbor relation on a set of points in
space (known assites), using an exact geometric criterion
– the “empty sphere test” [6]. The DT has been used in the
analysis of protein structure1, among other applications, for
detecting pockets and cavities [9, 10], scoring packing in-
teractions and distinguishing native proteins from artificial
decoy structures [5, 11, 8], and detecting patterns of local
structure [12].

In applications that deal with protein data, point coordi-
nates are known only imprecisely – factors such as experi-
mental errors and protein flexibility introduce small changes
in the point coordinates that can produce different sets of
Delaunay simplices2. So, a natural question arises: whether
analyses based on DT are stable and robust under changes
to the input coordinates. To answer this question, we de-
fined thealmost Delaunay simplices[1] that give possible
neighbors under a bounded perturbationε of the input.

Definition 1 (Almost-Delaunay) For a finite set of point
sitesP andε ≥ 0, aperturbation byε adds a vector|vi| ≤ ε
to eachpi ∈ P . The set ofalmost-Delaunay simplices
AD(ε) contains ak-tupleS ⊂ P iff there exists a pertur-

∗Portions of this research were supported by NSF grant 0076984.
1For an introduction to protein structure see [3]
2In d dimensions, ak-simplex,k <= d is defined byk+1 affinely

independent points; thus tetrahedra are 3-simplices.

bation byε producingSε ⊂ Pε such thatSε has a circum-
scribing sphere containing no points ofPε.
Eachk-tuple, for1 ≤ k ≤ d + 1, is an almost-Delaunay
simplex for some minimum value ofε, denoted itsthresh-
old. The Delaunay simplices are those with threshold zero.

We related computation of the almost-Delaunay (AD)
threshold to a variant of a minimum-width annulus problem,
and proved properties of almost-Delaunay simplices [1] that
we specialize here for tetrahedra in 3D:1). Local minima
of the threshold correspond to annuli defined by 5 points
in general position, with at least 2 on the inner sphere and
2 on the outer, though a slab (annulus with infinite center
and radii) is a special case defined by 4 points.2). Points
on the inner sphere form a Delaunay simplex.3). Center of
the minimum-width annulus for a simplexS can come from
the intersection of the Voronoi diagram of all points and the
furthest-point Voronoi diagram of the points inS. We then
described an algorithm based on these properties.

We identified two parameters arising from biological
constraints that help us speed up our algorithm: theedge
length prune, i.e. the maximum edge length between two
neighboring sites, typically 10̊A; and thethreshold cutoff,
i.e. the maximum perturbation allowed, 0.5–2Å depending
on the type of perturbations of interest. Thus, we begin by
computing the thresholds for almost-Delaunay edges, and
from them, for triangles and tetrahedra as in Figure 1.

Compute
Delaunay
tessellation

Partition
 edges

short:

long: >prune
Discarded

Comp. ε
for short non-
Del. edges

high: ε>cutoff
Discarded

high: ε>cutoff
Discarded

Make s, tets
from DT &
AD(ε) edges

Input point sites
Output almost-
Delaunay Simplices

Compute
threshold ε
for s, tets

short Delaunay:

Figure 1. Processing AD edges then AD simplices
In this paper, we describe our implementation of the AD

threshold computation for edges, triangles and tetrahedra in
3D, using CGAL. We discuss some design decisions, unex-
pected issues that arose during development, solutions and
the things we learned. Finally we report on verification and
timing comparison with the previous implementation.

2 CGAL implementation

We had a MATLAB implementation of the entire algorithm
in 3D that was well tested and fast, aggressively using MAT-
LAB’s vectorized operations to trade time for space. But it

1

became unreasonably slow and ran out of memory as the in-
put point set grew to 1000 points (large protein chains, rep-
resented by one point per residue) or 3000 points (medium-
length chains with all atoms). To improve speed and mem-
ory utilization, we decided to completely rewrite the code
using C++ and CGAL.

The steps for the AD computation in 3D are below:

• Generate list of short non-Delaunay edges, which are the po-
tential AD edges, from a proximity graph.

• Consider any such edge,pq.

1. Compute thecandidate centersof a minimum-width
annulus, which are vertices of the intersection of the
Voronoi diagram with the bisector plane ofpq. Infinite
edges of the Voronoi diagram are candidate centers of
slabs and are stored as directions. We use Brown’s
lifting technique [4], which involves computation of
the lower convex hull in dual space.

2. Evaluate the width of the annulus at each candidate
center, which hasp andq on the outer sphere and three
points on the inner sphere (two for slabs).

3. Find the minimum width over all candidate centers.
Half of this width is the AD threshold for edgepq.

4. Retain the edge asvalid if its threshold is≤ cutoff,
otherwise remove it from the proximity graph.

5. Retain candidate centers with threshold≤ cutoff (and
candidate centers connected to them by Voronoi edges)
for the next stage of computation.

• Output the list of valid AD edges and their thresholds.

• For each valid AD edge,pq:

– Generate possible AD triangles by querying the prox-
imity graph for pointsr that are near bothp andq.

– For each pointr:

1. Select frompq’s candidate centers, those whose
annulus containsr. This is a linear half-plane
constraint on the candidate centers, since all cen-
ters closer tor than top or q would lie on the side
facing away fromp andq of the line equidistant
to all three points.

2. Generate new candidate centers at the intersec-
tion points of edges between candidate centers
and the constraint, denotedconstraint cuts. The
existence of minimum-width annuli at constraint
cuts is the reason we stored candidate centers
with high threshold that were connected by edges
to ones with threshold≤ cutoff.

3. Compute the annulus width at constraint cuts.p,
q, r are on the outer sphere and the two points of
the Voronoi edge are on the inner sphere.

4. Find the minimum annulus for edgepq from
among candidate centers satisfying the constraint
generated byr, and constraint cuts ofr.

5. Record the threshold if it is less than cutoff.

– The AD tetrahedron algorithm is similar. We generate
the possible AD tetrahedra by querying the proximity
graph for two pointsr ands that are near each other
and also near bothp andq. Then we generate two con-
straints (forr ands) and look for the minimum annulus
among candidate centers that satisfybothconstraints.

• The threshold for4pqr is the minimum of the threshold of
pq constrained byr, pr constrained byq, andqr constrained
by p. Similarly the threshold for a tetrahedron is the mini-
mum constrained threshold over all the edges.

• A final special case: there are AD triangles and tetrahedra
with all edges Delaunay, and in our point sets these always
arise when three Delaunay tetrahedra share an edge (say
pq) whose vertices lie on opposite sides of the plane of the
three other vertices(a, b, c); 4abc and tetrahedraabcp and
abcq are almost-Delaunay. We enumerate these triangles and
tetrahedra during a traversal of the Delaunay tessellation, and
compute their thresholds separately for efficiency, since we
have verified experimentally that their minimum width an-
nuli contain only the 5 points(a, b, c, p, q).

2.1 Lessons from CGAL implementation :
Issues and Design Decisions

Proximity data structures: We decided to use two differ-
ent structures for proximity information, one to store the
Delaunay tetrahedra with short edges, and another to store
all short edges and non-Delaunay short edges. We con-
sidered using CGAL’s neighbor searching algorithms, but
since proximity has to be calculated only once, and we
needed a way to remove pairs of points from the prox-
imity relationship if their AD threshold is above the cut-
off, we decided to store proximity in a graph using the
Boost Graph Library (www.boost.org) and encapsulated it
in a classADPointNeighbors , with methods to list all
short edges and to find points or pairs of points near a short
edge. The short Delaunay edges, triangles and tetrahedra
were encapsulated into another classMyDelaunay that
uses CGAL’sDelaunay_triangulation_3 . It uses
a boolean state stored in each tetrahedron and each of its
faces to provide traversals of only the short edges and the
triangles and tetrahedra containing them (an earlier imple-
mentation where we deleted cells from the triangulation led
to precondition violations and instabilities in the traversal).
ADPointNeighbors holds a reference toMyDelaunay
for computing non-Delaunay short edges.

Fast and Robust Computation of 3D Convex Hull Us-
ing Delaunay Insertion and Static Filters: We started out
using theCartesian<double> kernel since we were
concerned about speed, and exact computation was not a
big priority since the original MATLAB code also used
floating-point computation, and protein coordinates were
not expected to have degeneracies (or could be perturbed
if they did). We faced problems with the convex hull
computation;Convex_hull_incremental_3 , based
on an incremental algorithm, was much slower than the
MATLAB code that interfaced with Quickhull [2], and
Convex_hull_3 , based on Quickhull, was faster but
crashed or went into an infinite loop for several common
inputs. Using exact number types andLazy_exact_NT
was too slow, and theFiltered_kernel robustified
predicates, but the convex hull code depended onexact

2

constructionof a plane containing three points, on which
an orientation test was failing. We changed the convex
hull code so that it used a plane class that stores the
three defining points and tests orientation against them us-
ing a determinant, instead of computing the plane equa-
tion. Now the code did not crash, but it was still slower
than the equivalent MATLAB code, since it needed the
Filtered_kernel to work and could not make use of
faster static filters3 sinceConvex_hull_3 uses a predi-
cate (has_on_positive_side_3()) for which no fil-
tered version was available. We anticipate that this problem
may be fixed in a future release of CGAL.

To make use of faster static filters that have been written
for the DT [7], we replaced the computation of convex hull
by incremental Delaunay insertion – running a DT point lo-
cation for each point, and inserting only the points found
outside the convex hull of the current DT. In the end all faces
on the convex hull of the DT (adjacent to the infinite face)
were reported as the convex hull. After this modification,
the AD edge code using filtered floating point computation
was not much slower that the MATLAB code using floating
point computation, as shown in Table 1.

Balancing Library Component Use With Custom De-
velopment: We found that achieving a balance between
using sophisticated existing packages and writing custom
code helped speed our development process. For exam-
ple, since our definition of minimum-width annulus does
not require it to contain all points but only points of the
simplex, we did not use CGAL’sMinimum_annulus_d
package. Instead we implemented the lifting technique [4].
Since available functions for projecting a 3D point onto
a plane and lifting it to a paraboloid were unsuitable
(Plane_3.projection(Point_3) did not transform
coordinates,Plane_3.to_2d(Point_3) had a bug,
andConstruct_lifted_point_3 lifted to a plane),
we hand-coded both operations in a function object. Also,
we chose to calculate the fairly simple furthest point
Voronoi regions (bisector plane between 2 points, and lines
equidistant from 3 points), rather than use code forkth-
order Voronoi diagrams such as Julia Flötotto’s prototype
listed on the CGAL site.

Genericity through Function Objects: CGAL’s tem-
plated function objects4 for predicates and data conversions,
as well as many that we designed in the spirit of CGAL,
played a major role in giving us efficient, reusable code.
This was a major redesign from MATLAB. Some func-
tion objects we wrote implement the projection operation
involved in lifted Voronoi computation; bounding box and
centroid computation on an iterator range or a container of
points; mapping an iterator range of points to their vertex

3Static filters <K>, an undocumented CGAL kernel that will be
merged intoFiltered kernel <K>.

4objects that declare operator() and can be used as functions with state

index numbers; a constraint equation object that can test
ranges of candidate center points (including centers at in-
finity, stored as rays) to find ones that satisfy it, and find
intersection points with edges joining two centers ; a se-
quence indexer to index a sequence container with multiple
subscripts; and a sequence minimizer to find the minimum
value in a container over a set of valid indices. In our en-
thusiasm to make these function objects do everything, we
gave many of them constructors that take an iterator range
and call the STL algorithmfor_each to apply the same
function operation on the elements of that range (by passing
it *this). However, we needed to pass the state reached
during execution on the range back to the calling instance
using a method call, since the function object used is copied
by value and the state will otherwise be lost. In this exam-
ple of code from a function object constructor,out() is
a method that returns the value of state variableresult .
The first statement fails, while the second works.

// op() updates result in temp copy, changes lost!
std::for_each(indices_list.begin(),
indices_list.end(),*this);
// get updated result from copy using method
result=std::for_each(indices_list.begin(),

indices_list.end(),*this).out();

Degeneracies Creep In:Though we had assumed that
our point sets were degeneracy-free, we found that degener-
ate configurations for some predicates and constructions did
arise, e.g. “almost vertical” segments on which 2D segment-
line intersections fail since the intersection point lies outside
the bounding box of the segment, and three points whose
plane is perpendicular to the bisector plane of two other
points, so that when projected on it they are collinear and
when lifted their tangent planes do not intersect in a point.
When an imprecise test finds an intersection point in the lat-
ter case, it gives a negative value of AD threshold that is im-
possible and must be rejected. Finally, proteins represented
by all atom coordinates contain coplanar atoms in the pep-
tide bond and planar sidechains, and certain decoys built on
a cubic lattice have cospherical atoms. In these cases we ap-
ply a random perturbation to the input of magnitude much
smaller than any intended cutoff value, which changes the
AD thresholds of simplices at most by a correspondingly
small value.

2.2 Correctness, Time complexity and comparison

We verified that our algorithm is implemented correctly by
comparing the almost-Delaunay edge, triangle and tetrahe-
dra thresholds output by it with the MATLAB implemen-
tation (which was itself tested against a brute-force imple-
mentation). The test set for the comparison comprised over
400 proteins, run at different values of the cutoff and prune
parameters. The results were found to match in every case.

Our algorithm takesO(n2 log n) time for calculation of
AD edges andO(n2) for calculation of AD tetrahedra in

3

typical proteins, proved with some assumptions about the
data in [1]. The times taken by the implementation for 12
proteins are shown in Table 1. We observe that for comput-
ing edges, CGAL using filtered computation was not much
slower than an optimized MATLAB implementation using
floating point. For triangles and tetrahedra, CGAL was an
order of magnitude faster, partly because the MATLAB im-
plementation was complex and not fully optimized. Both
stages of the MATLAB version ran out of memory for input
data with 1000–3000 points, while CGAL did not.

PDB # #nonD AD edges (sec) ADtri/tet (sec)
ID pts edges Matlab CGAL Matlab CGAL
1ab8A 115 252 2.1 1.1 3.3 0.6
1jkeA 145 479 4.4 2.6 7.0 1.5
1bjfA 181 474 4.5 3.5 8.5 1.3
1jmkC 222 691 7.4 6.1 11.1 2.4
1g6aA 266 980 11.0 10.3 18.7 4.0
1c8bA 320 1024 11.9 13.6 20.8 4.5
1crzA 397 1557 20.0 25.1 41.3 8.4
1lj8A 481 1604 21.6 30.1 51.3 9.0
1m2oA 718 2491 40.5 72.1 136.4 19.1
1gaxA 862 2903 53.5 97.8 208.1 27.6
1iw7C 999 3390 108.0 140.1 307.8 34.3
1d2rA 2563 31537 nomem 3408 nomem 1193

Table 1. Time taken by two steps of the AD computation for
a few protein chains, on a P4 2.0GHz with 512MB of memory.
Cutoff was 2.0Å and edge length prune was 10Å, except for the
last chain which has coordinates for all atoms, closer together than
representative points, where cutoff was 0.5Å and prune was 6.0̊A.

3 Limitations and Future Work

While profiling the current implementation, we found that it
wastes significant time in converting the points on the con-
vex hull computed by Delaunay insertion, into a polyhedral
surface, using thePolyhedronincrementalbuilder 3 class;
on the average, 10-20% of the time taken to compute the
convex hull. This step was necessary to interface with code
that used CGAL functions to traverse a polyhedral surface
returned byConvexhull 3. Some of these functions, such
as computing boundary half-edges that correspond to slabs,
were difficult to write for a data structure not based on half-
edges. Still, rewriting the code to traverse the surface of the
DT would remove this overhead.

The implementation has migrated to a series of compil-
ers and platforms as it got more complex through its de-
velopment, and right now it uses CGAL-3.05, and compiles
with the Intel compiler version 7.1 on Windows, andgcc
3.3.x on CYGWIN and Redhat Linux 9.0.

Though our framework allows computation of the
almost-Delaunay simplices in dD, we have a complete im-
plementation only in 3D since the driving problem of an-
alyzing protein structure is in 3D. A 2D implementation is
planned. We plan to make almost-Delaunay simplices avail-
able as a CGAL extension package, and pursue further algo-

5a few files were modified to make theStatic filtersmethods accessible

rithmic improvement (make it output sensitive, incremental
and kinetic).

4 Conclusion

As the CGAL project evolves, users find new applications
and provide feedback, many of the tricks we used in our im-
plementation will no longer be needed, and the functionality
of many external libraries we used will be readily available
in CGAL components. In the meantime, we have shared
our CGAL experience with fellow users and are happy with
its end result – a practical implementation of our algorithm
in 3D that robustly handles large datasets and expands the
capabilities of our protein structure analysis tools.

Acknowledgments

We thank David O’Brien, resident STL and CGAL expert, and members

of the CGAL developer community for help getting started and later for

insightful suggestions and solutions. In particular we thank Andreas Fabri

who pinpointed the convex hull robustness problem and wrote the fix for

robust plane construction and code for Delaunay-insertion convex hull;

Sylvain Pion for help with static filters and triangulations; and Radu Ursu

for help with the Microsoft compiler.

References
[1] D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay simplices :

Nearest neighbor relations for imprecise points. InACM-SIAM Sym-
posium On Discrete Algorithms, pages 403–412, 2004.

[2] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The Quickhull al-
gorithm for convex hulls.ACM Trans. Math. Softw., 22(4):469–483,
1996.

[3] C. Branden and J. Tooze.Introduction to Protein Structure. Garland
Publishing, second edition, 1999.

[4] K. Q. Brown. Geometric transforms for fast geometric algorithms.
PhD thesis, Carnegie–Mellon University, Pittsburgh, Penn., 1980.

[5] C. W. Carter, B. C. LeFebvre, S. Cammer, A. Tropsha, and M. H.
Edgell. Four-body potentials reveal protein-specific correlations to
stability changes caused by hydrophobic core mutations.Journal of
Molecular Biology, 311(4):625–638, 2001.

[6] B. Delaunay. Sur la sph̀ere vide. A la memoire de Georges Voronoi.
Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh
Nauk, 7:793–800, 1934.

[7] O. Devillers and S. Pion. Efficient exact geometric predicates for
delaunay triangulations. In5th Workshop on Algorithm Engineering
and Experiments (ALENEX 03), Baltimore, Maryland, Jan. 2003.

[8] B. Krishnamoorthy and A. Tropsha. Development of a four-body sta-
tistical pseudo-potential to discriminate native from non-native pro-
tein conformations.Bioinformatics, 19(12), 2003.

[9] J. Liang, H. Edelsbrunner, P. Fu, P. Sudhakar, and S. Subramaniam.
Analytical shape computing of macromolecules II: identification and
computation of inaccessible cavities inside proteins.Proteins, 33:18–
29, 1998.

[10] J. Liang, H. Edelsbrunner, and C. Woodward. Anatomy of protein
pockets and cavities: Measurement of binding site geometry and im-
plications for ligand design.Protein Science, 7:1884–1897, 1998.

[11] R. Singh, A. Tropsha, and I. Vaisman. Delaunay tessellation of pro-
teins.J. Comput. Biol., 3:213–222, 1996.

[12] H. Wako and T. Yamato. Novel method to detect a motif of local
structures in different protein conformations.Protein Engineering,
11:981–990, 1998.

4

