
About Arithmetics and Kernels

Sylvain Pion

Abstract

Non-robustness problems are a well known issue when it comes to
implementing computational geometry algorithms. In this talk we will
present an overview of the general approach followed by CGAL to address
them. We will then introduce the tools provided by CGAL to implement
it. Finally, We will try to list some ideas that could be followed in the
future to improve the situation.

1 Introduction

Most geometric algorithms are a mix of numerical and combinatorial computa-
tions. This specific nature is usually considered as the root of the non-robustness
problems that arise when implementing them since the correctness of the combi-
natorial part is usually guaranteed by geometric theorems which are not verified
by approximate numerical computations.

There are several solutions in the litterature to solve the non-robustness
issues. On one side there are approaches which target specific algorithms to
make them tolerant to most kinds of input, by making the algorithms not crash,
even though they compute a non mathematically exact solution.

Given the number of algorithms in CGAL, it would have been difficult to
address the issues one algorithm at a time that way. Hence we have considered
the general approach known as the Exact Geometric Computation paradigm
(EGC). At the beginning of the development of CGAL, it has been decided to
parametrize all algorithms by a traits class, specifying the types of the geometric
objects and the basic geometric primitives acting on them (predicates and con-
structions). This design decision allowed to decouple the implementation of the
algorithms from the implementation of traits classes, which are encapsulating
the non-robustness solutions in the EGC paradigm.

Traits classes also tend to contain functionalities which are re-usable between
different algorithms, hence the union of their functionalities has been gathered
in kernels.

CGAL had from the beginning a few families of kernels providing solu-
tions to the non-robustness problems : Cartesian<FT> and Homogeneous<RT>.
These allowed to support both fast/approximate computations, e.g. using
Cartesian<double>, and exact/slower computations when plugging-in an exact
number type, e.g. Cartesian<Quotient<Gmpz> >.

1



After that came the optimization phase, where users needed both robustness
and efficiency. So we will describe next the various steps which are needed to
implement EGC efficiently. EGC is not only about exact arithmetic operations
needed to implement geometric primitives, since an important remark is that
providing exact geometric primitives is enough to ensure that the algorithms
are robust.

2 Arithmetic tools

2.1 Multiprecision

The basic tool to implement EGC is exact arithmetic. CGAL is interfaced to
external libraries that provide exact or guaranteed multiprecision computations:

• GMP which provides multiprecision integers and rationals (we do not use
the multiprecision floats of MPFR at the moment).

• LEDA which additionaly provides real, i.e. numbers incrementally con-
structed with the 4 basic operations plus the k-th root. The sign of such a
number can be computed exactly, which guarantees exact implementation
of predicates.

• CORE which is similar to LEDA::real but only supports the square root
(not general k-th root), but supports a rootOf operator able to extract
roots of a polynomial with integer coefficients.

CGAL also provides the MP Float class which can compute exact polynomial
expressions with double coefficients. Together with the generic Quotient class,
it also provides exact rational computations.

Multiprecision computation is costly by nature, so in order to amortize its
cost, we use arithmetic filters.

2.2 Filters

Efficient implementation of EGC also relies on filters : a way to compute with
multiprecision only on demand, that is, when approximate, but certified, com-
putation is not precise enough to guarantee the exact geometric primitives.
CGAL provides interval arithmetic through the Interval nt class, which is a
basic tool to implement dynamic filters.

In order to make it easier to use, this filtering scheme is encapsulated in
Filtered kernel<K>, which is a kernel wrapper around K whose predicates are
replaced by filtered exact versions. Each predicate of the kernel is thus wrapped
using the generic functor adaptor Filtered predicate. This scheme also allows
to apply the filtering techniques to predicates of traits classes which are not in
the kernel, or to user code.

Other filtering schemes are available, although not as general :
Filtered exact is the ancestor of Filtered kernel but it provides a num-
ber type interface, Fixed precision nt provides static filters for the predicates

2



used by 2D and 3D Delaunay triangulations, Static filters provides a similar
functionality but is less constrained on the input data.

2.3 Constructions

CGAL also provides a tool to compute geometric constructions in a lazy manner,
following the same filtering principles : Lazy exact nt is a number type storing
a DAG of the computation, with an interval approximation. The DAG is used
to re-evaluate the value using an exact number type when the approximation is
not precise enough.

3 Kernel organization

The kernel gathers dozens of geometric primitives and types. Providing variants
of all of these using different schemes would be a maintainance nightmare if
done by hand and copy-paste. Therefore we are using generic programming
techniques as much as possible.

The kernel provides 2 interfaces to the user : global functions like
CGAL::orientation(p, q, r) which are convenient to use separately, and cor-
responding functors like K::Orientation 2 which are more easily usable by
generic algorithms, especially those of the STL.

Recent changes in the kernel are aiming at making the first interface (global
functions) call the second (the functors)1. That way, it is easy to provide a
new kernel only by its functors, and get the global function interface for free.
This is what Filtered kernel is doing for example. The advantage over the
reverse solution is that it is easier to process all functors automatically using
functor adaptors: Filtered predicate mentionned previously, but also other
tools like Kernel checker which allows to run 2 kernels in parallel for debugging
purposes, or we could think of a projection kernel (2D geometry from 3D points
as if projected on one plane)...

4 Conclusion and Future work

Finally, here is a list of things which would be nice to have in future CGAL
releases:

• Merge the functionality of Static filters into Filtered kernel.

• Improve the static filters so that they can be used with inputs which are
not only doubles.

• Provide a kernel with filtered constructions (similar to Lazy exact nt but
with one node of the DAG per geometric construction, not per arithmetic
operation).

1This is hopefully be completed for the next release

3



• Better support for filtered constructions in the kernel by (re-)introducing
constructive predicates, which allow to store some intermediate computa-
tions (the difficult part is to nicely handle the filtering schemes which only
deal with predicates).

• In the longer term, it would be nice to have a way to generate static filters
for the whole kernel automatically. This requires static code analysis tools.

4


