
A Case Study on the Portability of old CGAL Code

Stefan Schirra∗ Christian Schulz∗

May 7, 2004

1 Introduction

In this abstract we report on our efforts to port ”a case study on the cost of geometric computing” [5],
which was based on release 1.2 of CGAL, to the latest release 3.0.1.

Right form the beginning of CGAL, algorithms in CGAL were parameterized by a geometry
kernel and CGAL provided geometry kernels parameterized by number types [1, 2]. The resulting
adaptability made CGAL an excellent platform for experimentation regarding robustness of geometric
computing and the cost of geometric computing. An extensive case study on the performance of
various geometry kernels in a number of algorithms for computing the convex hull of a planar point
set was performed by the first author in 1998 [5]. The geometry kernels compared in the case study
include the kernels resp. convex hull traits classes of CGAL-1.2. In addition, a few other kernels
as well as specializations and variations of the CGAL kernels had been implemented and tested in
the case study. Supplementary planar convex hull algorithms had been implemented and compared
with CGAL’s convex hull algorithms existent in release 1.2. Besides the case study framework, the
code to be ported comprises these additional convex hull traits classes and supplementary convex hull
algorithms.

Since release 1.2, CGAL evolved a lot. Many modifications have been made to make the library
more uniform (e.g. with respect to naming conventions) or more flexible (e.g. geometry kernels with
enhanced extensibility [3]), accompanied by realizations of the standardization of C++ (e.g. use of
namespaces). The progress made in CGAL reflects in many problems that arose while attempting to
port the old code [4] to the most recent release CGAL-3.0.1. In the sequel we discuss (some of) these
problems.

2 Namespace CGAL

A major change in release 2.0 of CGAL was the introduction of namespace CGAL in order to get
rid of the CGAL prefix used in release 1.2 to avoid name clashes with other libraries. Release 2.0
and later releases come with a script use cgal namespace to replace the prefix by CGAL::. The
script contains a list of reserved words where CGAL is not replaced.

Since many functions and classes in the case study package had been considered as candidates
for later inclusion in CGAL at the time of writing the code, these functions and classes had a CGAL
prefix as well, although they were user code and not part of CGAL-1.2. For all these functions and

∗Otto-von-Guericke-University Magdeburg, Department of Computer Science, Institute of Simulation and Graphics,
Magdeburg, Germany. Email: {stschirr, chrschul}@isg.cs.uni-magdeburg.de

1

classes, the script replaces prefix CGAL by CGAL:: when applied to the case study source files. The
definitions of all these functions and classes had to be put into namespace CGAL by enclosing them
by namespace CGAL { and }.

Not surprisingly, the case study package used a few own macro names starting with CGAL as well.
But of course, these names are not listed as reserved words in use cgal namespace and hence
the script replaces the CGAL prefix by CGAL:: in unwanted places, too, for example, in include
protection mechanisms and #ifdef directives. These errors had to be corrected manually. Note, that
this is not a bug of the script provided by CGAL. Looking at the case study code retrospectively, it
was not a good idea to mimic CGAL code and CGAL programming style that closely.

3 Convex Hull Traits

Convex hull algorithms are parameterized by convex hull traits, i.e., a collection of types for the geo-
metric primitives used in the code. The case study package provided own convex hull traits according
to the specification documented with CGAL-1.2 and own convex hull algorithm implementations pa-
rameterized by such traits classes. The types contained in the convex hull traits in CGAL-1.2 were:

typedef CGAL_Point_2<R> Point_2;
CGAL_convex_hull_traits_2<R>::Less_xy
CGAL_convex_hull_traits_2<R>::Less_yx
CGAL_convex_hull_traits_2<R>::Leftturn
CGAL_convex_hull_traits_2<R>::Rightturn
CGAL_convex_hull_traits_2<R>::Right_of_line
CGAL_convex_hull_traits_2<R>::Less_dist_to_line
CGAL_convex_hull_traits_2<R>::Less_rotate_ccw

In the process of unification of naming schemes and traits classes, in particular in order to make
a kernel usable as a traits class in the algorithms of CGAL’s basic library, some names of function
object classes have been changed in the convex hull traits. Now all the names have a 2 suffix and
abbreviations are now largely avoided. The concept of a convex hull traits class now contains the
following types:

typedef R::Point_2 Point_2;
typedef R::Less_xy Less_xy_2;
typedef R::Less_yx Less_yx_2;
typedef R::Less_signed_distance_to_line_2 Less_signed_distance_to_line_2;
typedef R::Less_rotate_ccw_2 Less_rotate_ccw_2;
typedef R::Left_turn_2 Left_turn_2;
typedef R::Equal_2 Equal_2;

The Rightturn function object has been dropped, as it provides redundant functionality only.
Wherever Rightturnwas used, a left turn predicate can be used as well with rearranged parameters.
Consequently corresponding modification had to be made in the convex hull code of the case study
package. CGAL-3.0.1 provides an adaptor called Turn reverser to turn a left turn predicate into
a right turn predicate. This is a very useful, but apparently undocumented tool.

Next, there is now an Equal 2 function object in the new traits class and this function object is
actually used in CGAL’s planar convex hull code. Therefore, all the additional traits classes of the
case study package had to provide this function object as well. On the other hand we decided not to
use this function object in our own convex hull code, but to stay with overloaded operator==()s.

2

We think, that this increases readability of the source code and hence eases maintenance work and
ranked this higher than the gain in adaptability reached by the use of Equal 2.

The Leftturn predicate got the new name Left turn 2. Since CGAL’s planar convex hull
code uses the function object with the new name, we had to rename the corresponding function in our
own convex hull traits classes.

Worst of all, the function objects Less dist to line and Less rotate ccw not only got a
new name, but they got a new interface as well. Previously, the function object Less dist to line
had a constructor with two arguments of corresponding point type, the two points defining the line,
and a function call operator with two arguments, namely the points whose distance is compared. Ap-
parently in order to have only default constructible function objects in the traits classes (resp. kernel),
the constructor of the substitute Less signed distance to line 2 now has no arguments and
the function call operator now has four arguments of corresponding point type, the first two are defin-
ing the line and the latter two are the points whose distance is compared. Now and then function
object constructors are called through member functions of the convex hull traits class. In the old
code we had

less_dist = ch_traits.get_less_dist_to_line_object(*a_it,*b_it);
c_it = max_element(f_it, b_it, less_dist);

And now we have

less_dist = ch_traits.less_signed_distance_to_line_2_object();
c_it = std::max_element(f_it, b_it, bind_1(bind_1(less_dist, *a_it), *b_it));

So a binder must be applied twice to fix the points defining the line. Of course, this calls for major
adjustments in both the traits classes and the convex hull code of the case study package. In the
code fragment above, the function object is always used with the first two arguments fixed to the
points defining the line. However, the function object can not make use of this fact, e.g. by doing
some precomputation internally. The use of the old-style function object would reveal an avenue
for optimization by precomputing the line data. However, to my knowledge, the old CGAL code in
release 1.2 did not make use of such an optimization either. But at least, it did render this possible. So
we consider the new interface a change for the worse.

Analogously, the interface of Less rotate ccw changed. Previously, this was a binary func-
tion object predicate with an unary constructor and construction member function in the traits class.
Now, it is a ternary predicate, which can be trimmed to the old usage by binding its first argument
using bind 1.

In order to enable the use of bind 1 in CGAL’s convex hull code, the function object predi-
cates now must be models of the concept AdaptableFunctor, in particular, they must provide an
CGAL::Arity tag<> tag. So we had to provide this functionality in our traits class models as well.
Concerning the construction member functions, the get prefix present in CGAL-1.2 was removed
and the 2 suffix reflecting the change in the function object names has been added. Again, a change
requiring adjustments in both own traits classes and own planar convex hull algorithms.

4 Kernels

The implementation of the kernel models provided by CGAL has gone through extensive revision.
Since some of the case study code was mere specializations of kernel code existent in CGAL-1.2,
these specializations had to be adjusted according to internal changes in CGAL. For example, some
internal code had been dropped, some files had been renamed,

3

An early goal in the development of CGAL was to make a model of a kernel usable as a traits
class for those algorithms that have no needs for special predicates. This is the main justification for
the changes in the convex hull traits class. However, there is an incongruity in the current release. The
requirements on the convex hull traits list function object Left turn 2, whereas the requirements
on the kernel list Leftturn 2. Hence, a model for CGAL’s concept of a kernel can not be used
as a convex hull traits model, unfortunately. At present, the kernels delivered by CGAL provide
both function objects. Moreover, the documentation of the ... object() member functions for
constructing predicate instances is somewhat hidden in the kernel documentation.

5 Further Porting Issues

We also had a number of minor problems with the proceeding realization of standard C++ in recent
compilers, for example, delete .h from <vector.h> and others, add std:: to cout and so
on. Furthermore, there was a design problem in a few case study algorithms, where it was assumed
implicitly that the iterator type of a vector of Points is Point*. By the way, nowadays we use
gcc-3.3.3, while egcs-2.91 was used in [5].

6 Conclusions

Porting the old code is a challenge, especially, because the old code made extensive use of features
available in CGAL-1.2, documented and undocumented ones. The library further evolved and is now
much more uniform and consistent. The evolution was accompanied with many changes destroying
backwards compatibility and causes a very time-consuming and demanding revision of the case study
code. Nevertheless, the improvements in the design of the CGAL library are highly welcome and,
with the exception of discarding function object constructors with arguments, we consider all the
relevant changes made between 1.2 and 3.0.1 an improvement. Moreover, we expect the kernel and
traits class concept to be stable now, at least for some time ,. The porting load is just the price a user
has to pay for the progress.

References

[1] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. On the design of CGAL a computational
geometry algorithms library. Softw. – Pract. Exp., 30(11):1167–1202, 2000.

[2] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The CGAL kernel: A basis for geometric
computation. In M. C. Lin and D. Manocha, editors, Proc. 1st ACM Workshop on Appl. Comput. Geom.,
volume 1148 of Lecture Notes Computer Science, pages 191–202. Springer-Verlag, 1996.

[3] S. Hert, M. Hoffmann, L. kettner, S. Pion, and M. Seel. An adaptable and extensible geometry kernel. In
Proc. Workshop on Algorithm Engineering, volume 2141 of Lecture Notes Computer Science, pages 79–90.
Springer-Verlag, 2001.

[4] S. Schirra. Companion pages to “A case study on the cost of geometric computing”. http://www.
mpi-sb.mpg.de/˜stschirr/exact/cost_of_geometric_computing/

[5] S. Schirra. A case study on the cost of geometric computing. In M. T. Goodrich and C. C. McGeoch,
editors, Algorithm Engineering and Experimentation (Proc. ALENEX ’99), volume 1619 of Lecture Notes
Computer Science, pages 156–176. Springer-Verlag, 1999.

4

