
Segment Voronoi diagrams in CGAL

Menelaos I. Karavelas

Computer Science and Engineering Department

University of Notre Dame, U.S.A.

mkaravel@cse.nd.edu

Abstract

Voronoi diagrams are one of the most fundamental and useful constructs in computational
geometry. In this talk we focus on the Euclidean Voronoi diagram of segments on the plane and
the corresponding CGAL implementation.

The Voronoi diagram of segments in CGAL is designed after the CGAL 2D triangulations and
makes use of CGAL’s Triangulation Data Structure. The algorithm implemented is incremental
and allows for generic data, i.e., there is no restriction as to whether the input segments intersect
or not. Upon insertion of a site (a point or a segment) the algorithm finds the region of
conflict of the new site with the existing Voronoi diagram, and then repairs the Voronoi diagram
accordingly. In order to find the conflict region the algorithm needs to find the nearest neighbor
of the site to be inserted. This is either done by a simple walk on the Voronoi diagram or
by making use of an additional data structure, the Voronoi diagram hierarchy. The Voronoi
diagram hierarchy is a hierarchy of Voronoi diagrams with the property that the diagram at
each level only contains a randomly chosen subset of the sites in the lower level diagram; the
bottom-most level is the segment Voronoi diagram for the entire set of sites. As a result our
implementation offers for free the capability of performing fast nearest neighbor queries on the
Voronoi diagram.

The user has the ability to control several parameters of the segment Voronoi diagram CGAL
package. Choices include:

1. whether or not to use the hierarchy of Voronoi diagrams,

2. what traits and data structure to use,

3. how the predicates are to be computed, and finally,

4. indicate whether or not intersecting sites are to be supported or not.

The latter choice is exploited by the algorithm to reduce the internal memory/storage require-
ments, as well as for a more efficient implementation of the predicates. The CGAL package offers
various models for all of the above parameters. We have implemented a model for the required
data structure, as well as various models for the traits class that provide additional flexibility to
the user. All traits classes are parameterized by a CGAL kernel, allowing the user to choose the
desired number type. Moreover, the user can indicate what type of arithmetic operations are to
be used in conjuction with the chosen number type. Finally, we have implemented models of the
traits concept that perform arithmetic filtering, in addition to the simpler traits that assume
the existence of an exact CGAL kernel.

1


